Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fei-Fei Sun,^a Ning Ma,^a Zheng-Ming Li^b* and Hai-Bin Song^b

^aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China, and ^bElemento-Organic Chemistry Institute, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: zmlteam@eyou.com, nkzml@nk.sina.net

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.052 wR factor = 0.153 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

2-Amino-4-(2,2,2-trifluoroethoxy)pyrimidine

The crystal structure of the title compound, $C_6H_6F_3N_3O$, has two molecules in the asymmetric unit; these are linked by two intermolecular $N-H \cdots N$ hydrogen bonds to form a dimer. The planes of the rings of the two molecules are slightly inclined, with a dihedral angle of 27.1 (3)°. The dimers are joined *via* a pair of $N-H \cdots F$ hydrogen bonds to form a tetramer.

Comment

Pyrimidine compounds have attracted much attention for their biological activities and molecular structures. The crystal structures of some 2-amino-substituted pyrimidine compounds, such as 2-amino-4-methoxy-6-methylpyrimidine (Glidewell *et al.*, 2003), 2-amino-4,6-dimethylpyrimidinium bromide (Panneerselvam *et al.*, 2004), 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini *et al.*, 2005), 2amino-4,6-dimethylpyrimidine–cinnamic acid (Balasubramani *et al.*, 2005) and *catena*-2-aminopyrimidinecopper(II) (Bulut *et al.*, 2005), have previously been elucidated. Here, we report the crystal structure of the title compound, (I).

In the crystal structure of (I), the asymmetric unit is a hydrogen-bonded dimer (Fig. 1) containing two molecules of (I). All of the C, N and O atoms in one molecule, including the ethoxy substituent, are essentially coplanar, with a mean deviation of 0.0182 Å In the other molecule, the pyrimidine ring and the N and O atoms directly attached to it are coplanar, with a mean deviation of 0.0079 Å, but the distal atom of the ethyl group is twisted out of this plane by about 10.5° , as shown by the torsion angle C8–O2–C11–C12 = 169.5 (3)°. The dihedral angle between the planes of the two molecules is 27.1 (3)°.

There is a pair of intermolecular hydrogen bonds, N1– H1A···N6 and N4–H4B···N3 (Table 1), between the two molecules in the dimeric asymmetric unit. Furthermore, another pair of hydrogen bonds, N4–H4A···F4ⁱ and N4ⁱ– H4 A^{i} ···F4 [symmetry code: (i) 1 – x, 2 – y, -z], join two dimers to form a tetramer (Fig. 2). The crystal structure is also stabilized by π - π interactions between the pyrimidine rings of adjacent molecules (Fig. 3); the distance between the centroids

Received 3 April 2006 Accepted 30 July 2006 of rings C1–C4/N2/N3 and C7–C10/N5/N6($\frac{1}{2} + x, \frac{3}{2} - x, \frac{1}{2} + z$) is 3.625 (3) Å.

Experimental

Na (0.8 g, 3.5 mmol) was dissolved in trifluoroethanol (20 ml); 2amino-4-chloropyrimidine (2.0 g, 1.5 mmol) (Kuh & Clapper, 1947) was added, and the mixture was refluxed for 3 h. The solution was filtered and the excess trifluoroethanol was distilled off *in vacuo*. The residue was redissolved in 20% HCl (10 ml). After adjusting the pH to 8–9 with 20% NaOH, the precipitate which formed was filtered off and recrystallized from petroleum ether to give white crystals (m.p. 344–346 K; yield 59%). Elemental analysis, calculated for C₆H₆F₃N₃O: C 37.32, H 3.13, N 21.76%; found: C 37.18, H 3.13, N 21.60%. Colourless single crystals of (I) suitable for crystallographic analysis were obtained by the slow evaporation of an acetone solution at room temperature over 7 d.

Z = 8

 $D_x = 1.558 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

 $\mu = 0.16 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.044$

 $\theta_{\rm max} = 25.0^{\circ}$

Prism, colourless

 $0.24 \times 0.20 \times 0.12 \text{ mm}$

8219 measured reflections

2905 independent reflections 1669 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_0^2) + (0.0731P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.3351P]

 $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Crystal data

 $\begin{array}{l} C_{6}H_{6}F_{3}N_{3}O\\ M_{r}=193.14\\ \text{Monoclinic, }P2_{1}/n\\ a=12.135 \ (6) \ \text{\AA}\\ b=10.537 \ (5) \ \text{\AA}\\ c=13.705 \ (7) \ \text{\AA}\\ \beta=109.989 \ (9)^{\circ}\\ V=1646.8 \ (14) \ \text{\AA}^{3} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.883, T_{\max} = 1.000$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.153$ S = 1.012905 reflections 236 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots N6$	0.86	2.24	3.100 (7)	173
$N4 - H4B \cdots N3$ $N4 - H4A \cdots F4^{i}$	0.86 0.86	2.21 2.46	2.999 (6) 3.258 (7)	153 155

Symmetry code: (i) -x + 1, -y + 2, -z.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93 or 0.96 Å, N–H distances of 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(parent)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Figure 1

The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonds are indicated by dashed lines.

Figure 2

The tetramer structure of (I), with displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonds are indicated by dashed lines.

Figure 3

A molecular packing diagram, showing the π - π stacking interactions (superimposed pyrimidine rings). Hydrogen bonds are shown as dashed lines.

This work was funded by the the National Basic Research Programme of China (973 Programme, grant No. 2003CB114406).

References

- Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). *Acta Cryst.* E61, 04203–04205.
- Bruker (1997). SMART (Version 5.501), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228– m230.
- Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, 09–013.
- Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, 095–097.
- Kuh, E. & Clapper, T. W. (1947). US Patent No. 2 425 248.
- Panneerselvam, P., Muthiah, P. T. & Francis, S. (2004). Acta Cryst. E60, 0747– 0749.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.