Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Fei-Fei Sun, ${ }^{\text {a }}$ Ning Ma, ${ }^{\text {a }}$<br>Zheng-Ming Li ${ }^{\text {b }}$ and Hai-Bin Song ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ Elemento-Organic Chemistry Institute, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
zmlteam@eyou.com, nkzml@nk.sina.net

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.052$
$w R$ factor $=0.153$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 2-Amino-4-(2,2,2-trifluoroethoxy)pyrimidine

The crystal structure of the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$, has two molecules in the asymmetric unit; these are linked by two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form a dimer. The planes of the rings of the two molecules are slightly inclined, with a dihedral angle of 27.1 (3) ${ }^{\circ}$. The dimers are joined via a pair of $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds to form a tetramer.

## Comment

Pyrimidine compounds have attracted much attention for their biological activities and molecular structures. The crystal structures of some 2-amino-substituted pyrimidine compounds, such as 2-amino-4-methoxy-6-methylpyrimidine (Glidewell et al., 2003), 2-amino-4,6-dimethylpyrimidinium bromide (Panneerselvam et al., 2004), 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005), 2-amino-4,6-dimethylpyrimidine-cinnamic acid (Balasubramani et al., 2005) and catena-2-aminopyrimidinecopper(II) (Bulut et al., 2005), have previously been elucidated. Here, we report the crystal structure of the title compound, (I).

(I)

In the crystal structure of (I), the asymmetric unit is a hydrogen-bonded dimer (Fig. 1) containing two molecules of (I). All of the $\mathrm{C}, \mathrm{N}$ and O atoms in one molecule, including the ethoxy substituent, are essentially coplanar, with a mean deviation of $0.0182 \AA$ In the other molecule, the pyrimidine ring and the N and O atoms directly attached to it are coplanar, with a mean deviation of $0.0079 \AA$, but the distal atom of the ethyl group is twisted out of this plane by about $10.5^{\circ}$, as shown by the torsion angle $\mathrm{C} 8-\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 12=$ $169.5(3)^{\circ}$. The dihedral angle between the planes of the two molecules is 27.1 (3) ${ }^{\circ}$.

There is a pair of intermolecular hydrogen bonds, N1$\mathrm{H} 1 A \cdots \mathrm{~N} 6$ and $\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{~N} 3$ (Table 1), between the two molecules in the dimeric asymmetric unit. Furthermore, another pair of hydrogen bonds, $\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{~F} 4^{\mathrm{i}}$ and $\mathrm{N} 4^{\mathrm{i}}-$ $\mathrm{H} 4 A^{\mathrm{i}} \cdots \mathrm{F} 4$ [symmetry code: (i) $1-x, 2-y,-z$ ], join two dimers to form a tetramer (Fig. 2). The crystal structure is also stabilized by $\pi-\pi$ interactions between the pyrimidine rings of adjacent molecules (Fig. 3); the distance between the centroids

Received 3 April 2006
Accepted 30 July 2006
of rings $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{N} 2 / \mathrm{N} 3$ and $\mathrm{C} 7-\mathrm{C} 10 / \mathrm{N} 5 / \mathrm{N} 6\left(\frac{1}{2}+x, \frac{3}{2}-x, \frac{1}{2}+z\right)$ is 3.625 (3) $\AA$.

## Experimental

$\mathrm{Na}(0.8 \mathrm{~g}, 3.5 \mathrm{mmol})$ was dissolved in trifluoroethanol ( 20 ml ); 2-amino-4-chloropyrimidine ( $2.0 \mathrm{~g}, 1.5 \mathrm{mmol}$ ) (Kuh \& Clapper, 1947) was added, and the mixture was refluxed for 3 h . The solution was filtered and the excess trifluoroethanol was distilled off in vacuo. The residue was redissolved in $20 \% \mathrm{HCl}(10 \mathrm{ml})$. After adjusting the pH to $8-9$ with $20 \% \mathrm{NaOH}$, the precipitate which formed was filtered off and recrystallized from petroleum ether to give white crystals (m.p. $344-346 \mathrm{~K}$; yield $59 \%$ ). Elemental analysis, calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$ : C 37.32, H 3.13, N 21.76\%; found: C 37.18, H 3.13, N $21.60 \%$. Colourless single crystals of (I) suitable for crystallographic analysis were obtained by the slow evaporation of an acetone solution at room temperature over 7 d .

## Crystal data

| $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}$ | $Z=8$ |
| :--- | :--- |
| $M_{r}=193.14$ | $D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Monoclinic, $P 2_{1} / n$ | Mo $K \alpha$ radiation |
| $a=12.135(6) \AA$ | $\mu=0.16 \mathrm{~mm}^{-1}$ |
| $b=10.537(5) \AA$ | $T=293(2) \mathrm{K}$ |
| $c=13.705(7) \AA$ | Prism, colourless |
| $\beta=109.989(9)^{\circ}$ | $0.24 \times 0.20 \times 0.12 \mathrm{~mm}$ |
| $V=1646.8(14) \AA^{3}$ |  |

## Data collection

| Bruker SMART CCD area-detector | 8219 measured reflections |
| :---: | :--- |
| $\quad$ diffractometer | 2905 independent reflections |
| $\varphi$ and $\omega$ scans | 1669 reflections with $I>2 \sigma(I)$ |
| Absorption correction: multi-scan | $R_{\text {int }}=0.044$ |
| $\quad(S A D A B S ;$ Sheldrick, 1996) | $\theta_{\max }=25.0^{\circ}$ |

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0731 P)^{2}\right. \\
& \quad+0.3351 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$w R\left(F^{2}\right)=0.153$
$S=1.01$
2905 reflections
236 parameters

H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N1-H1A $\cdots \mathrm{N} 6$ | 0.86 | 2.24 | $3.100(7)$ | 173 |
| N4-H4B 3 N3 | 0.86 | 2.21 | $2.999(6)$ | 153 |
| N4-H4A $\cdots \mathrm{F} 4^{\mathrm{i}}$ | 0.86 | 2.46 | $3.258(7)$ | 155 |

Symmetry code: (i) $-x+1,-y+2,-z$.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 or $0.96 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent).

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.


Figure 1
The asymmetric unit of (I), with displacement ellipsoids drawn at the $30 \%$ probability level. Intermolecular hydrogen bonds are indicated by dashed lines.


Figure 2
The tetramer structure of (I), with displacement ellipsoids drawn at the $30 \%$ probability level. Intermolecular hydrogen bonds are indicated by dashed lines.


Figure 3
A molecular packing diagram, showing the $\pi-\pi$ stacking interactions (superimposed pyrimidine rings). Hydrogen bonds are shown as dashed lines.

This work was funded by the the National Basic Research Programme of China (973 Programme, grant No. 2003CB114406).

## References

Balasubramani, K., Muthiah, P. T., RajaRam, R. K. \& Sridhar, B. (2005). Acta Cryst. E61, o4203-04205.
Bruker (1997). SMART (Version 5.501), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Bulut, A., İçbudak, H., Sezer, G. \& Kazak, C. (2005). Acta Cryst. C61, m228m230.
Glidewell, C., Low, J. N., Melguizo, M. \& Quesada, A. (2003). Acta Cryst. C59, o9-o13.
Hemamalini, M., Muthiah, P. T., Rychlewska, U. \& Plutecka, A. (2005). Acta Cryst. C61, o95-o97.
Kuh, E. \& Clapper, T. W. (1947). US Patent No. 2425248.
Panneerselvam, P., Muthiah, P. T. \& Francis, S. (2004). Acta Cryst. E60, o747o749.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

